Agenda

• Welcome/Introductions
• Electric Vehicle Market Barriers/Opportunities
• MTA Sustainability Initiatives
• Panel Sub-Groups/Policies Under Consideration
• Logistics for Public Input
• Open Discussion
Before beginning, a few reminders to ensure a smooth discussion:

- Panel members should be on mute when not speaking
- Video is encouraged for Panel members, in particular when speaking
- We will not be muting individuals for this discussion; the chair will call on members individually, at which time please unmute
- If technical problems arise, please contact Gina McIntyre at gina.mcintyre@dot.ny.gov
Transportation Advisory Panel Members

Marie Therese Dominguez, Chair
 NYSDOT

Jared Snyder
 NYSDEC

Paul Allen, M. J.
 Bradley &
 Associates

Dimitris Assanis,
 Stony Brook
 University

Steve Finch, AAA
 Western & Central
 New York

Albert Gore III, Tesla

Kendra Hems,
 Trucking Association
 of New York

Elgie Holstein,
 Environmental
 Defense Fund

Renae Reynolds,
 New York City
 Environmental
 Justice Alliance

Porie Saikia-Eapen,
 Metropolitan Transit
 Authority

John Samuelsen,
 Transport Workers
 Union of America
 AFL-CIO

Kerene Tayloe, WE
 ACT for
 Environmental
 Justice

Julie Tighe, NYS
 League of
 Conservation Voters

Craig Turner, Buffalo
 Niagara
 International Trade
 Gateway
 Organization

Nancy Young,
 Airlines for America

Bob Zerrillo, New
 York Public Transit
 Association
Electric Vehicle Market
Barriers and Opportunities

www.Climate.ny.gov
Transportation Advisory Panel

Electric Vehicle Market Barriers and Opportunities

Dr. Geoff Morrison
The Cadmus Group

November 3, 2020
Agenda

• Overview

• Electrifying Light-Duty Vehicles

• Electrifying Medium-/Heavy-Duty Vehicles

• Electrifying Aviation

• Take-Aways on Barriers to Transportation Electrification
Memo on New York EVs

Scope: Characterize current state of EV deployment in New York, drawing on relevant literature, public data tools, and a variety of national and state sources.

- Delivered to NYSERDA in July 2020
- Summarizes all sub-sectors in transportation with most emphasis on light-duty
- Describes trends and New York-specific barriers
Electrifying light-duty vehicles
EV Fraction of Vehicle Stock, by State

New York is 11th in electric light-duty vehicle stock (1.4%). Similar EV charger deployment per EV as other comparable states.
Market Share by Model Year

Terms

Mild HEV: Hybrid with small battery (e.g., Honda Insight)

Strong HEV: Hybrid with large battery (e.g., Toyota Prius)

PHEV: Plug-in hybrid (e.g., Chevy Volt)

BEV: Battery electric vehicle (e.g., Tesla)
Electric Vehicle Cost Parity Coming Soon

Before 2030, BEVs are anticipated to reach both total and upfront cost parity with ICE vehicles, indicating BEVs are a viable alternative technology that can be deployed today.

EV Quick Facts for NYS

- Long Island, NYC Metro have highest EV density.
- Teslas are ~1/3 of total in the state.
- New EV registrations peaked in 2018 with release of Tesla Model 3.
- Model Year 2020 PEV sales look much stronger than 2019.
- BEV/PHEV splits is 41% / 59%.

EVs vs Plugs per 1,000 People, by Region

- **Upstate**
- **New York City Metro**
- **Long Island**

Plots showing the number of EVs and Plugs per 1,000 people for different regions in New York, with data points for 2014 to 2019.
1701 zip codes in New York were segregated by percentile based on several key factors that influence EV ownership. The EVs per 1,000 were calculated for each 10th percentile.

Insights
Some variables have strong relationships with EV ownership (e.g., median HH inc.), while others increase then decrease (e.g., pop density).
EVs per 1,000 people, by Zip-Code Characteristic

Explanation
1701 zip codes in New York were segregated by percentile based on several key factors that influence EV ownership. The EVs per 1,000 were calculated for each 10th percentile.

Insights
Some variables have strong relationships with EV ownership (e.g., median HH inc.), while others increase then decrease (e.g., pop density).
Daily miles for household vehicles in New York State, by urban size.

Daily Miles for New York Drivers, by Urban Density

Fraction of Drivers

Daily Miles Traveled

Rural Drivers
Drivers in City of 50K-200K People
Drivers in City of 200K-500K People
Drivers in City of 500K-1 Million People
Drivers in City of 1 Million+ People

Not for distribution
Location of household vehicles in New York State over typical day.
Electrifying Medium/Heavy-Duty
Medium/Heavy-Duty Vehicle Population in NYS

Overview
- Electrification at very early stage
- ~500 electric MHDVs registered in NY (mostly buses) out of ~1.2 million
- 27% of MHDVs in New York share home bases with 5+ other vehicles, which creates potential challenges for distribution system.
- Must pare battery size, charging speed, and range requirements
- Weight of batteries creates payload reduction on some freight trucks.

Electric Vehicle Avg Battery Size (kWh) vs. Avg Charge Speed for 80% Charge (hrs)

<table>
<thead>
<tr>
<th>Electric Vehicle</th>
<th>Avg Battery Size (kWh)</th>
<th>30 kW</th>
<th>50 kW</th>
<th>150 kW</th>
<th>350 kW</th>
<th>500 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus - Coach</td>
<td>336</td>
<td>8.9</td>
<td>5.4</td>
<td>1.8</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Bus - School</td>
<td>143</td>
<td>3.8</td>
<td>2.3</td>
<td>0.8</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Bus - Shuttle</td>
<td>101</td>
<td>2.7</td>
<td>1.6</td>
<td>0.5</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Bus - Shuttle, Bus - Transit</td>
<td>150</td>
<td>4.0</td>
<td>2.4</td>
<td>0.8</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Bus - Shuttle, Delivery</td>
<td>126</td>
<td>3.3</td>
<td>2.0</td>
<td>0.7</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Bus - Shuttle, Truck</td>
<td>127</td>
<td>3.4</td>
<td>2.0</td>
<td>0.7</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Bus - Transit</td>
<td>315</td>
<td>8.4</td>
<td>5.0</td>
<td>1.7</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Delivery</td>
<td>154</td>
<td>4.1</td>
<td>2.5</td>
<td>0.8</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Delivery, Food Truck</td>
<td>128</td>
<td>3.4</td>
<td>2.0</td>
<td>0.7</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Delivery, Refuse</td>
<td>143</td>
<td>3.8</td>
<td>2.3</td>
<td>0.8</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Delivery, Tractor, Truck</td>
<td>485</td>
<td>12.9</td>
<td>7.8</td>
<td>2.6</td>
<td>1.1</td>
<td>0.8</td>
</tr>
<tr>
<td>Delivery, Truck</td>
<td>232</td>
<td>6.2</td>
<td>3.7</td>
<td>1.2</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Panel Van</td>
<td>72</td>
<td>1.9</td>
<td>1.1</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Refuse</td>
<td>256</td>
<td>6.8</td>
<td>4.1</td>
<td>1.4</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Refuse, Tractor, Truck</td>
<td>160</td>
<td>4.3</td>
<td>2.6</td>
<td>0.9</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Truck</td>
<td>141</td>
<td>3.8</td>
<td>2.3</td>
<td>0.8</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Electrifying Aviation
Electric Aircraft

Overview

- Electrification of aircraft is gaining momentum
- Reduces emissions, reduces noise, eliminates lead, saves fuel costs
- Near-term market for all-electric aircraft is for short range, <10 passenger aircraft or drone delivery
- Focus should be on general aviation airports
- NASA project vertical takeoff and landing aircraft to be economically viable by 2028

Number of Electric Aircraft Design Projects Globally

- Narrow body
- Vertical Takeoff and Landing
- Light
- Light-Sport Aircraft
- Ultra-Light Aircraft

<table>
<thead>
<tr>
<th>Avg # Seats</th>
<th>Narrow body</th>
<th>Vertical Takeoff and Landing</th>
<th>Light</th>
<th>Light-Sport Aircraft</th>
<th>Ultra-Light Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seats</td>
<td>69</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

SOURCE: Gnäd, A. R. et al. Technical and environmental assessment of all-electric 180-pasenger commercial aircraft, 2019
Takeaways on Barriers
Barriers to EV Growth in NYS

<table>
<thead>
<tr>
<th>Barrier</th>
<th>Implication</th>
</tr>
</thead>
</table>
| **Price and Model Availability** | • EVs have not yet reached sticker-price parity
• Preference for larger models does not align with available EVs today |
| • Avg MSRP of light-duty EV models sold in New York in 2019 is $37,500 for non-luxury models
• High fraction (70%) of light-duty vehicles in state are pickup trucks, SUVs, or crossovers | |
| **Housing Stock** | • Access issues for residential charging infrastructure
• Lower electrical capacity at older houses means more upgrades |
| • Relatively high fraction of MUDs compared to US avg (51% compared to 29%)
• Relatively old housing stock compared to US avg (avg construction year in NYS is 1954 compared to 1997) | |
<table>
<thead>
<tr>
<th>Barrier</th>
<th>Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Charging</td>
<td>• Low/Mid-range EVs may not be viable; vacation</td>
</tr>
<tr>
<td>• Large spatial gaps in DCFC network (esp. Upstate)</td>
<td>• Lack of interoperability is inefficient and reduces functional EVSE prevalence</td>
</tr>
<tr>
<td>• 13 EVSPs operating in NYS means diverse user interfaces, memberships, and fees (31% of public plugs are Tesla)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>• Technology may not be mature as a 1:1 ICE replacement</td>
</tr>
<tr>
<td>• Performance of vehicles and chargers in cold weather</td>
<td>• Potential strains on distribution system</td>
</tr>
<tr>
<td>• 27% of MHD fleet vehicles are in fleets with 5 or more vehicles</td>
<td>• Only short-range electric air travel feasible in next decade</td>
</tr>
<tr>
<td>• Electric aircraft severely limited by energy density of today’s batteries (14x less than jet fuel)</td>
<td></td>
</tr>
</tbody>
</table>
Other On-Going Work
Other On-Going EV Activities in Project

• Electric Vehicle Diffusion Model
• TCO modeling of chargers and vehicles
• Bottom-up load shapes, by vehicle type and charger type
• Policy analysis, including:
 • 100% ZEV sales in 2035
 • California Advanced Clean Truck rule
 • New York LCFS
Vehicle Diffusion Model

- Reflects the diverse interests of vehicle buyers by segment
- Captures preferences for non-cost factors in consumer choice
- Provides high spatial resolution adoption forecasts
- Transparent and publicly available data sources
- Underlying stock turnover model
Thank you!

Dr. Geoff Morrison
Senior Associate
Geoffrey.Morrison@Cadmusgroup.Com
Discussion
Transportation Advisory Panel Members

Marie Therese Dominguez, Chair
NYS DOT

Jared Snyder
NYS DEC

Paul Allen, M. J.
Bradley & Associates

Dimitris Assanis,
Stony Brook University

Steve Finch, AAA
Western & Central
New York

Albert Gore III, Tesla

Kendra Hems,
Trucking Association of New York

Elgie Holstein,
Environmental Defense Fund

Renae Reynolds,
New York City
Environmental Justice Alliance

Porie Saikia-Eapen,
Metropolitan Transit Authority

John Samuelsen,
Transport Workers Union of America
AFL-CIO

Kerene Tayloe, WE
ACT for Environmental
Justice

Julie Tighe, NYS
League of Conservation Voters

Craig Turner, Buffalo
Niagara International Trade
Gateway Organization

Nancy Young,
Airlines for America

Bob Zerrillo, New
York Public Transit
Association
MTA Sustainability Initiatives

www.Climate.ny.gov
The MTA at a Glance

- 8-9M Riders/weekday
- 5000 Sq. Mile Operating Territory
- Assets & Infrastructure:
 - 2000 Miles of Track
 - 9000 Train Cars
 - 6000 Buses
 - 700 Stations
 - 7 Bridges
 - 2 Tunnels
MTA Operating Agencies

1. MTA Bus
2. NYCT Subways & Buses
3. Long Island Rail Road
4. Metro-North Railroad
5. Bridges & Tunnels

MTA MISSION

Keep Employees Safe
Keep Customers Safe
Keep the System moving
MTA and *Livable NY*

Public Transit Fosters

Regional economic strength
- A flexible network that fosters continued growth
- A resilient network that insulates the region’s economy from extreme weather events

Social equity
- Low-cost fares for all residents with reliable service service

Revitalization/rebirth of urban & suburban neighborhoods
- Reliable service with low-cost fares
- Expanded affordable housing in emerging neighborhoods

Lowest per capita energy consumption & GHG emissions
- Moves the masses translating to fewer cars avoiding CO2 emissions
MTA and *Smart NY*

MTA transit network covers 75% of the NY metro population.

- 1.4 trillion real GDP in the metro area
- 70% of metro area wages in the MTA service area
- 7 million workers in the MTA service area

Sources: MTA; Bureau of Labor Statistics
MTA and *Regenerative NYC*

MTA Contributes More Than 400,000 Jobs to Local Economy
(2016 Data)

<table>
<thead>
<tr>
<th>Region</th>
<th>Annual Employment</th>
<th>Total 5 Year Program</th>
<th>Labor Income (Millions)</th>
<th>Output (Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Country and Capital Regions</td>
<td>2,465</td>
<td>12,327</td>
<td>$733</td>
<td>$1,916</td>
</tr>
<tr>
<td>Southern Tier Region</td>
<td>275</td>
<td>1,375</td>
<td>$52</td>
<td>$204</td>
</tr>
<tr>
<td>Western NY & Finger Lakes Regions</td>
<td>77</td>
<td>383</td>
<td>$23</td>
<td>$67</td>
</tr>
<tr>
<td>Mid-Hudson Region</td>
<td>9,801</td>
<td>49,006</td>
<td>$2,887</td>
<td>$6,625</td>
</tr>
<tr>
<td>NYC Region</td>
<td>60,007</td>
<td>300,037</td>
<td>$21,562</td>
<td>$36,940</td>
</tr>
<tr>
<td>Long Island Region</td>
<td>8,051</td>
<td>40,257</td>
<td>$2,290</td>
<td>$5,623</td>
</tr>
<tr>
<td>Central NY & Mohawk Valley Regions</td>
<td>68</td>
<td>341</td>
<td>$13</td>
<td>$56</td>
</tr>
<tr>
<td>Total NYS</td>
<td>81,351</td>
<td>406,755</td>
<td>$27,632</td>
<td>$51,846</td>
</tr>
<tr>
<td>Out-of-State</td>
<td>64,077</td>
<td>320,383</td>
<td>$20,594</td>
<td>$57,455</td>
</tr>
<tr>
<td>Total National Impact</td>
<td>145,427</td>
<td>727,137</td>
<td>$48,226</td>
<td>$109,301</td>
</tr>
</tbody>
</table>
MTA and Sustainable NY

Lowest per capita Carbon Footprint

700,000 cars off CBD-NYC Every Weekday

~17 million metric tons of Transit Avoided Carbon

Congestion/ Environment/ Energy /Time/Quality of Life
MTA’s Carbon Footprint -

Contributing to a Sustainable, Regenerative and Livable New York

~17 million metric tons of Transit Avoided Carbon
~2 million metric tons of Transit Impacted Carbon

Ten Pounds of GHG avoided for choosing a ride on the MTA network in NY

Emissions Produced by Transit

Emissions from Transit
- Tailpipe emissions from transit vehicles
- Electricity use for traction
- Maintenance yards, offices and other stationary sources

Emissions Displaced by Transit

Avoided Car Trips
- Mode shift from private autos

Land-Use Multiplier
- Compact land-use -> shorter trips, more walk/bike trips
- Trip chaining
- Lower car ownership

Congestion Relief
- Improved fuel efficiency from reduced congestion

Debit

Credit

Greenhouse Gas Impacts of Transit
Enhanced building standards that will make our built environment more resilient to extreme weather and climate change while promoting the health, safety, and prosperity of all New Yorkers.
Superstorm Sandy Damage Across the MTA System Oct 29, 2012
Superstorm Sandy Damage Across the MTA System Oct 29, 2012

NYCT

Track Level at South Ferry

Station Flooding at 86th and Broadway
South Ferry Station
Lower Manhattan

Superstorm Sandy Damage Across the MTA System Oct 29, 2012
ADAPTATION & RESILIENCY

Post SANDY Lessons Learned

<table>
<thead>
<tr>
<th>Steps</th>
<th>Opportunities to Integrate Climate Vulnerability and Risk</th>
</tr>
</thead>
</table>
| Establish Vision, Goals & Performance Measures | • Consider resilience to climate change in each element of policy framework for statewide and regional long range plans, transportation improvement programs, risk-based transportation asset management plans, and mode-specific plans.
• Establish regional and statewide performance measures related to climate change, resilience, and sustainability. |
| Assess Tradeoffs Between Modes and Programs | • Include climate risk as one key element of an agency’s broader risk management framework. Include climate-related risks in agency risk registers.
• Test implications of various funding allocation decisions at the level of program areas and modes. How do investments in adaptation strategies vs. safety vs. pavement/bridge maintenance vs. mobility affect a state’s or region’s ability to meet short-term and long-term performance targets? |
| Formulate and Evaluate Policies, Strategies, and Investments | • Propose specific adaptation strategies based on assessment of regional, subarea, and asset-level vulnerability and risk.
• Consider cost and feasibility of options. Some adaptations may be relatively expensive (perhaps requiring additional sources of revenue or outside financial support). |
| Apply Practical Design, Prioritize & Implement | • Make changes to assumptions about climate stressors, particularly for asset classes that have longer useful life and are in high-risk areas.
• Conduct "bottom up" prioritization of adaptation investments to complement "top down" program-level tradeoff analysis.
• Implement adaptation strategies at appropriate time frames given understanding of pace of climate change (including timing of risks) and key milestones. |
| Monitor Performance Results & Outcomes | • Monitor changing climate conditions and keep abreast of latest climate projections and models to inform decision and prioritization decisions.
• Amass database of weather events that cause damage or disruption to the transportation system. Archive operational data and damage reports, including costs and duration of closure.
• Conduct “plan vs. actual” analysis to measure effectiveness of adaptation investments in reducing or mitigating damage and disruption. |
MTA’s Resiliency Approach

- Protective Measures - keep water out
- Asset Protection - minimize damage if water enters system
- Recovery - expedite service restoration

Water Exclusion

Water Ejection and Asset Protection

Recovery and Resilient Systems/Processes
MTA Climate Policy & Prioritization

- Internal MTA-wide Climate Adaptation Task Force & Forums

- Improved enterprise asset management which includes location data and vulnerability and criticality metrics

- Coordinated geospatial analyses and the use of geographic information system (GIS) and mapping technologies

- Access to early detection warning systems including weather sensors and tide gages

- Incorporation of future climate projections into engineering design standards (temperature, precipitation, sea-level rise)
Update on agency-wide climate resiliency projects.

NYC + NE USA Alliance since 2015
RESILIENCY & PREPAREDNESS

Rapid Mitigation Measures - Now

Sidewalk Vent Cover

Manhole Inserts
RESILIENCY & PREPAREDNESS

Rapid Mitigation Measures

Water filled Cofferdam

NoFlood Barrier
RESILIENCY & PREPAREDNESS

Rapid Mitigation Measures

Flex Gate at subway Entrance
RESILIENCY & PREPAREDNESS

Rapid Mitigation Measures

Deployable AquaFence barriers @ tunnel Entrance

Brooklyn Battery/HCLT Tunnel
RESILIENCY & PREPAREDNESS

Mitigation Measures – Then
RESILIENCY & PREPAREDNESS

Rapid Mitigation Measures

Portal flood gate @ HCLT
Tunnel Entrance

Marine Door @ South Ferry
RESILIENCY & PREPAREDNESS

Rapid Mitigation Measures

Flood Logs @ entrance/Bowling Green

Inflatable Marine Door @ Whitehall St
RESILIENCY & PREPAREDNESS

Rapid Mitigation Measures

Entrance Mitigation at South Ferry / Lower Manhattan

Flood panels for doors and windows
RESILIENCY & PREPAREDNESS

Long Term Measures

Sea wall along coastal lines
RESILIENCY & PREPAREDNESS

Long Term Measures

Coney Island Yard
RESILIENCY & PREPAREDNESS

Long Term Measures

LIRR

Elevated Substations

Croton Harmon Substation

Long Beach

Oceanside

Oil City
RESILIENCY & PREPAREDNESS

Long Term Measures

LIRR

Long Beach Signal Switch

Emergency back up batteries
MNR

Tarrytown Substation

Croton Harmon Substation
30 Mile Hudson Line Power and C&S Infrastructure Restoration (Phase I + Phase II): $300 M

Damage
- Power components damaged and failed or with useful life reduced due to salt water intrusion
- C&S cable plant compromised

Scope
- Replace 30+ miles flooded and damaged railroad infrastructure from the Bronx to Croton-Harmon (Phases 1 and 2)
 - 30 miles of communications and signal cable plant
 - Traction power cables and components

Status
- In Procurement Phase
 - Preliminary design completed: 9/2014
 - Risk Assessment conducted
 - Award Design-Build contract (Phase 1) 5/2015; duration 24 months
 - An option for the Phase II is anticipated to be awarded in 5/2017, with a duration of 26 months
RESILIENCY & PREPAREDNESS

Long Term Measures

B&T

Sea Wall at Gov. Is Ventilation Bldg
Restored abutment at Cross Bay Bridge
GHG & Energy Efficiency

Transit GHG Emissions Typology

Emissions Produced by Transit

Emissions from Transit
- Tailpipe emissions from transit vehicles
- Electricity use for traction
- Maintenance yards, offices and other stationary sources

Emissions Displaced by Transit

Avoided Car Trips
Mode shift from private autos

Land-Use Multiplier
Compact land-use -> shorter trips, more walk/bike trips
- Trip chaining
- Lower car ownership

Congestion Relief
Improved fuel efficiency from reduced congestion

Greenhouse Gas Impacts of Transit

Debit
Credit

Per APTA GHG Calculation Format/Standards
We are making our facilities, infrastructure, and rolling stock more energy efficient. We're doing this in partnership with the New York Power Authority.

- We are replacing lighting, heating, and cooling systems with energy efficient models. These are paid for through energy savings. They have no impact to capital or operating budgets.

Completed Projects as of March 2019: 168

- Avoiding 102,000 metric tons of CO2 emissions
- **Annual Energy savings:**
 - 208 million kWh
 - 282,000 kW
 - 299,000 gallons of fuel oil
 - 1.6 million therms of natural gas

Active Projects: 42,

- Avoiding 24,800 metric tons of CO2 emissions
- **Annual energy savings:**
 - 30.8 million kWh
 - 45,000 kW
 - 36,900 gallons of fuel oil
 - 1.9 million therms of natural gas

ENERGY EFFICIENCY
Demand response

• We participate in the New York State Independent System Operator (NYISO) and ConEd's demand response programs. The demand response programs pay large consumers to reduce their electrical usage during times of peak demand. This improves the performance and reliability of the electrical grid.

• The MTA has 35 facilities enrolled in Demand Response programs. In addition, the Department of Subways substations are enrolled as a single account. We are working on expanding enrollment and performance. 2018 Annual Demand Reduction Revenue: $1.95 million.
Carbon accounting

The MTA is a founding member of The Climate Registry. By reporting our emissions, we work to reduce our greenhouse gas emissions and educate the public in the role that mass transit plays in avoiding carbon emissions.

Reducing Carbon Foot Print

Natural side-lighting at the Corona Maintenance Facility

Natural sky-lighting at the New Corona Car Washer and Maintenance Facility
Fuel Cell

One of the renewable energy sources at the New Corona Car Maintenance Facility in Queens is a 200 kW Fuel Cell unit installed with support from the New York Power Authority. The Corona Maintenance Facility is expected to exceed the New York State code for energy efficiency by 36 percent, and is the first NYC Transit facility certified under the Leadership in Energy and Environmental Design Standard, LEED™, created by the US Green Building Council.
Heat Recovery Units Ventilation systems use a great deal of energy and are costly because they require bringing air from outside a building and adjusting its temperature to maintain an indoor environment.

The roof of the Grand Avenue Bus Depot and Central Maintenance Facility in Maspeth, Queens, has 34 ventilation and heating units. The facility's heat recovery application runs warms air exhausts past the cold winter air that the ventilation system must constantly bringing because of bus fumes and exhausts.

Heat Recovery Units on the roof of the Grand Avenue Bus Depot

Heat conductors warm the fresh air enough to save approximately 48 percent in heating energy costs.
ENERGY EFFICIENCY

Regenerative Breaking

• MNR and LIRR have implemented Regenerative Breaking.
• NYCT- The fleet of New Technologies subway cars (also called New Millennium Trains) has regenerative braking—braking action that feeds energy back into the Third Rail that would otherwise be lost as heat when the train stops. These R-142, R-142A, R-143, and R-160 subway car-models run on the 2-3-4-5-6-L-N routes.
Since aluminum is a better conductor of electricity than steel, NYC Transit is experimenting with two kinds of aluminum third rails to save energy:

- an all-aluminum rail with a stainless steel cap on its contact surface; and
- a steel-and-aluminum hybrid rail that has a steel base and aluminum cladding on its sides.

Aluminum is also lighter than steel, which means aluminum-component rails are easier to handle, install, and replace than conventional steel rails.
Construction Waste MTA has diverted thousands of tons of traditionally landfill-bound construction waste for recycling. The Grand Avenue Bus Depot and Central Maintenance Facility in Maspeth Queens; and the rehabilitated Stillwell Avenue Terminal, Brooklyn; and Subway Station Roosevelt Avenue-74th Street, Queens, rehabilitation projects recycled up to 85 percent of construction debris, including concrete, metal, glass and paper.

EO 4 and Beyond MTA is looking at various initiatives for its internal (agency wide) paper use thereby reducing waste by implementing technology/Apps to encourage its employees and vendors to minimize paper printing.

Source Separation Recycling
From train yards, bus depots and other facilities. Apprx 750 tons per year.

Post-Collection Recycling
From public facing areas of the system. Apprx 6,800 tons of recyclables/year
Retiring of rail cars into the sea at the end of its useful life to serve as artificial reef.
The Grand Avenue Bus Depot and Maintenance Facility has a bus washing reclamation system with a 200,000-gallon underground tank that stores rainwater collected from the roof of the building. The system uses the water to wash buses, and recycles 80 percent of the wash water for non-potable uses.

The Corona Car Washer and Maintenance Facility has a rainwater collection system to drain rainwater into a 40,000-gallon underground storage tank, then sends this water to a subway car washer. Read more about the bus and car washer under Water Conservation.
Storm Water Management Program MTA created a Storm Water Management Program (SWMP) in accordance with United States Environmental Protection Agency requirements for storm water regulations under the Federal Clean Water Act.

The program establishes procedures to reduce pollutants caused by storm water runoff at MTA facilities. Pollution control measures include construction-site runoff controls, spill response and prevention, and waste management. Click here for more information:
MTA’s Participation in the Global Climate Agenda & COP21

May 2015
MTA becomes a Signatory Participant at UN’s Caring for Climate Program. MTA’s C4C Commitment Goals were:
• 20% Energy Reduction at all MTA Facilities
• Develop MTA wide Climate Adaptation Guidelines
• Continue to Develop and Implement Sustainable Strategies in Capital Projects

November 2015
MTA is Featured by UNFCC at COP21 in Paris for Post Sandy Strategies.

December 2016
MTA Meets C4C Goal #1
Extensive coordination with multiple stakeholders to successfully scale up Electric Bus deployments.
AEB- PILOT to Test & Evaluate 25 buses
Scale-up based on results

- MTA has 25 electric buses in operation (10 standard + 15 articulates).
 - The 10 standard buses are leased and were delivered January 2018. Five are in Manhattan, the other 5 in Brooklyn.
 - The 15 articulates run out of Manhattan along the M14A/D SBS routes and along the M60 SBS that goes to LGA, so it operates in both Manhattan and Queens.

- Scale up to 500 buses
 - 2020-2024 Capital Program

An electric articulated bus saves about 7,600 fewer gallons of diesel per year.
Charging Infrastructure - Williamsburg Bridge Plaza Brooklyn, New York
Photovoltaic (PV) Panels

- The **300kW system** on the roof of the Gun Hill Road Bus Depot in the Bronx is one of the largest PV facilities on the East Coast.

- The New Corona Car Washer and Maintenance Facility, Queens, has a **100kW rooftop system**.

- The 60,000-square-foot photovoltaic canopy over the Stillwell Avenue Subway Terminal (Coney Island-Stillwell Avenue Station, Brooklyn) **produces 250kW** of clean power.

- The Roosevelt Avenue-74th Street Station, Queens, **produces 65 kW** of power using two PV systems: a "conventional" system is on the roof; the second system, comprised of thin-film solar panels, is mounted to the metal standing seam canopy on the elevated subway platform.
On Earth Day 2019, MTA launched the MTA Solar Initiative identifying more than 100 million sf roof space suitable for solar development.
The Paris Agreement’s central aim is to strengthen the global response to the threat of climate change by keeping a global temperature rise this century well below 2°C above pre-industrial levels and to pursue efforts to limit the temperature increase even further to 1.5°C.

The transport sector accounts for 20% of global carbon emissions

Science Based Targets (SBT)
Emissions Pathway for Paris Climate Agreement Alignment
What are Science Based Targets?

- Align global economy with Paris Agreement emissions reduction targets to limit global warming well below 2°C, with a target limit of 1.5°C.
- SBT are consistent with long-term goal of net-zero emissions in 2nd half of 21st century.
How are Science Based Targets Developed?

Targets are compliant with absolute reductions in GHG emissions required for a well-below 2°C warming scenarios.

Targets are itemized based on Concept of Scope (areas where ACTON ITEMS/TARGETS/INITIATIVES come from):

Scopes identify high level GHG inventories and emissions, divided three ways.

| SCOPE 1 - DIRECT- emissions from sources that are owned or controlled by the reporting organization. (Facilities, Vehicles) |
| SCOPE 2- INDIRECT- emissions from the generation of electricity heater steam that’s been purchased and consumed by the reporting entity. *(Purchased Electricity, Steam, Heating & Cooling for use)* |
| SCOPE 3- INDIRECT- emissions from all other sources that are owned or controlled by some other third party - a broad category encompassing emissions from the manufacturer of purchased goods and services, *(vendor emissions while manufacturing rail car, bus, equipment etc)*. |
MTA Setting Target for SBTI by 2021

MTA Emissions Pathway for Paris Climate Agreement Alignment

MTA sets three separate targets, using 2015 as our baseline, on a 15-year goal:

- Weighted average reduction in emissions per passenger mile across all revenue-generating transportation modes
- Reduction in absolute emissions from non-revenue activities
- Reduction in absolute emissions from supply chain, supported by Carbon Disclosure Project (CDP)
Discussion

www.Climate.ny.gov
Transportation Advisory Panel Members

Marie Therese Dominguez, Chair
NYSDOT

Jared Snyder
NYSDEC

Paul Allen, M. J. Bradley & Associates

Dimitris Assanis, Stony Brook University

Steve Finch, AAA Western & Central New York

Albert Gore III, Tesla

Kendra Hems, Trucking Association of New York

Elgie Holstein, Environmental Defense Fund

Renae Reynolds, New York City Environmental Justice Alliance

Porie Saikia-Eapen, Metropolitan Transit Authority

John Samuelsen, Transport Workers Union of America AFL-CIO

Nick Sifuentes, TriState Transportation Campaign

Kerene Tayloe, WE ACT for Environmental Justice

Julie Tighe, NYS League of Conservation Voters

Craig Turner, Buffalo Niagara International Trade Gateway Organization

Nancy Young, Airlines for America

Bob Zerrillo, New York Public Transit Association

Julie Tighe, NYS League of Conservation Voters

Craig Turner, Buffalo Niagara International Trade Gateway Organization

Nancy Young, Airlines for America

Bob Zerrillo, New York Public Transit Association

Julie Tighe, NYS League of Conservation Voters

Craig Turner, Buffalo Niagara International Trade Gateway Organization

Nancy Young, Airlines for America

Bob Zerrillo, New York Public Transit Association
Panel Sub-Groups/ Policies Under Consideration
Sub-Group Policies Under Consideration

Electrification and Low Carbon Fuels/Renewables

- Sub-Work Group Members
 - Julie Tighe
 - Nick Sifuentes
 - Kendra Hems
 - Nancy Young
 - Elgie Holstein
 - Albert Gore
 - Paul Allen
 - Renae Reynolds
 - Steve Finch
 - Jared Snyder
 - Adam Ruder (staff lead - electrification)
 - Nathan Putnam (staff lead - fuels)
Sub-Group Policies Under Consideration

Market-Based Policies/Finance and Funding

• Sub-Work Group Members

 o Nick Sifuentes
 o Paul Allen
 o Kendra Hems
 o Julie Tighe
 o Elgie Holstein
 o Jared Snyder
 o Jason Pandich (staff lead)
Sub-Group Policies Under Consideration

Smart Growth/System Optimization

• Sub-Work Group Members

 o Porie Saikia-Eapen
 o Kendra Hems
 o Renae Reynolds
 o Bob Zerrillo
 o Paul Beyer, DOS (staff lead)
Sub-Group Policies Under Consideration

Public Transportation

• Sub-Work Group Members

 o Porie Saikia-Eapen
 o Bob Zerrillo
 o Nick Sifuentes
 o Kerene Tayloe
 o John Samuelsen
 o Ron Epstein, DOT (staff lead)
Sub-Work Groups Assignments

• Develop policy options for consideration by TAP

• Identify additional research/analysis needs necessary to progress potential policies

• Identify core experts/stakeholders to inform Sub-Work Group deliberations

• Coordinate with other Sub-Work Groups on areas of mutual interest/overlap (e.g., land use, finance)
Logistics for Public Input Meeting

www.Climate.ny.gov
Public Input

• E-mail: Transportation.publiccomment@dot.ny.gov

• Letter

 Transportation Advisory Panel
 C/O Abigail Schultz
 6th Floor, Room 6N23
 50 Wolf Road
 Albany, New York 12232

• Public Comment Period during Panel Meeting – Date TBA
Transportation Advisory Panel Members

Marie Therese Dominguez, Chair
NYSDOT

Jared Snyder
NYSDEC

Paul Allen, M. J.
Bradley &
Associates

Dimitris Assanis,
Stony Brook
University

Steve Finch, AAA
Western & Central
New York

Albert Gore III, Tesla

Kendra Hems,
Trucking Association
of New York

Elgie Holstein,
Environmental
Defense Fund

Renae Reynolds,
New York City
Environmental
Justice Alliance

Porie Saikia-Eapen,
Metropolitan Transit
Authority

John Samuelsen,
Transport Workers
Union of America
AFL-CIO

Nick Sifuentes,
TriState
Transportation
Campaign

Kerene Tayloe, WE
ACT for
Environmental
Justice

Julie Tighe, NYS
League of
Conservation Voters

Craig Turner, Buffalo
Niagara
International Trade
Gateway
Organization

Nancy Young,
Airlines for America

Bob Zerrillo, New
York Public Transit
Association
Next Steps/Open Discussion

www.Climate.ny.gov
Transportation Advisory Panel Members

Marie Therese Dominguez, Chair
NYSDOT

Jared Snyder
NYSDEC

Paul Allen, M. J. Bradley & Associates

Dimitris Assanis, Stony Brook University

Steve Finch, AAA Western & Central New York

Albert Gore III, Tesla

Kendra Hems, Trucking Association of New York

Elgie Holstein, Environmental Defense Fund

Renae Reynolds, New York City Environmental Justice Alliance

Porie Saikia-Eapen, Metropolitan Transit Authority

John Samuelsen, Transport Workers Union of America AFL-CIO

Nick Sifuentes, TriState Transportation Campaign

Kerene Tayloe, WE ACT for Environmental Justice

Julie Tighe, NYS League of Conservation Voters

Craig Turner, Buffalo Niagara International Trade Gateway Organization

Nancy Young, Airlines for America

Bob Zerrillo, New York Public Transit Association

Julie Tighe, NYS League of Conservation Voters

Craig Turner, Buffalo Niagara International Trade Gateway Organization

Nancy Young, Airlines for America

Bob Zerrillo, New York Public Transit Association